ESCUELA DE POSGRADO NEWMAN

MAESTRÍA EN GESTIÓN MINERA Y AMBIENTAL

"Propuesta de mejora mediante el tratamiento de minerales refractarios de oro y plata utilizando el proceso de nanofiltración en minera Lagunas Norte Perú - 2023"

Trabajo de Investigación para optar el Grado a Nombre de la Nación de:

Maestro en Gestión Minera y Ambiental

Autor:

Bach. Eduardo Cossío, Morales

Docente Guía:

Mgtr. Lewis Zúñiga, Patricio Federico.

TACNA – PERÚ

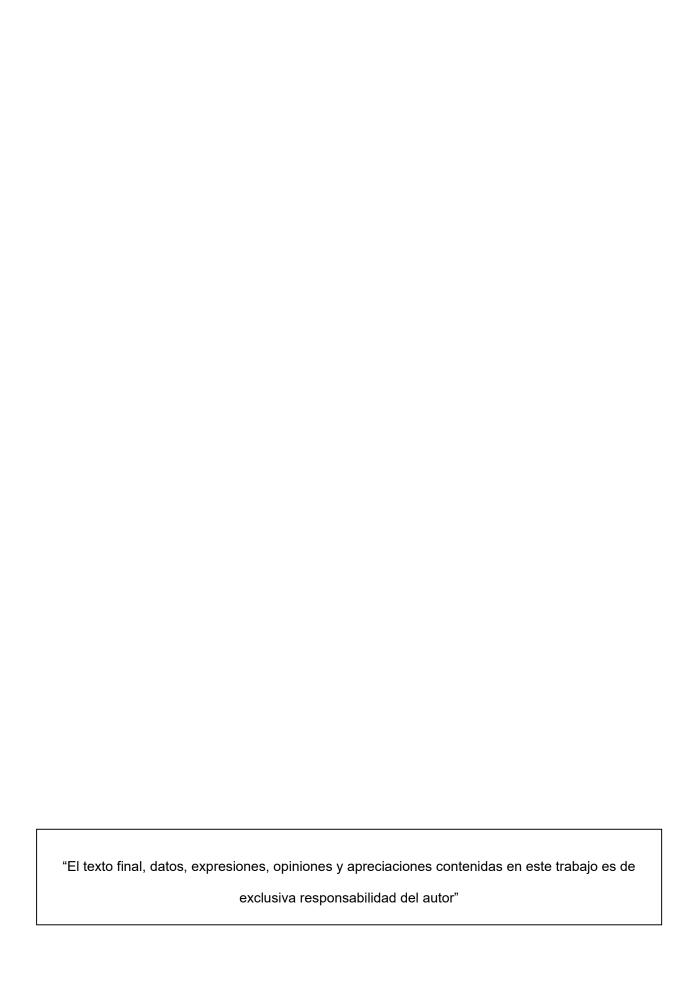
2023

"Propuesta de mejora mediante el tratamiento de minerales refractarios de oro y plata utilizando el proceso de nanofiltración en minera Lagunas Norte Perú-2023"

INFORME DE ORIGINALIDAD

20% INDICE DE SIMILITUD

18%


FUENTES DE INTERNET

6%

PUBLICACIONES

3%

TRABAJOS DEL ESTUDIANTE

INDICE DE CONTENIDO

INDICE DE	CONTENIDO	3
Índice de Ta	blas	2
Índice de Fig	guras	4
RESUMEN .		8
INTRODUC	CIÓN	10
CAPITULO I	I. ANTECEDENTES DE ESTUDIO	13
1.1. Títu	ılo del tema	13
1.2. Pla	nteamiento del problema	13
1.2.1.	Problema general	15
1.2.2.	Problemas específicos	15
1.3. Obj	jetivos	16
1.3.1.	Objetivo general	16
1.3.2.	Objetivos específicos	16
1.4. Jus	stificación	17
1.4.1.	Justificación teórica	17
1.4.2.	Justificación Metodológica	18
1.4.3.	Justificación practica	19
1.4.4.	Justificación tecnológica	19
1.5. Def	finiciones	20
1.6. Alc	ances y limitaciones	22
1.6.1.	Ubicación	22
1.6.2.	Alcances:	23
1.6.3.	Limitaciones	23
1.6.4.	Cronograma	25
CAPITULO I	II. MARCO TEÓRICO	26
2.1. Coi	nceptualización de las variables o tópicos clave	
2.1.1.	Minerales Refractarios:	30
2.1.2.	Nanofiltración:	31
2.1.3.	Recuperación de Oro y Plata:	31
2.1.4.	Eficiencia del Proceso:	32
2.1.5.	Reducción de Impurezas:	32
2.1.6.	Sostenibilidad Ambiental:	32
2.1.7.	Costos Operativos:	32
2.1.8.	Normativas y Regulaciones:	32
2.1.9.	Innovación Tecnológica:	33
2 1 10	Gestión de Riesgos:	33

2.1.11.	Procesos para la producción de los minerales de Oro y Plata en Mina	33
2.2. Imp	portancia de las variables o tópicos clave	40
2.2.1.	Eficiencia en la Recuperación de Metales Preciosos:	40
2.2.2.	Minimización de Pérdidas y Residuos:	40
2.2.3.	Reducción de Impurezas y Mejora en la Pureza:	41
2.2.4.	Sostenibilidad Ambiental:	41
2.2.5.	Reducción de Costos Operativos:	41
2.2.6.	Innovación Tecnológica:	41
2.2.7.	Cumplimiento Normativo y Legal:	41
2.2.8.	Gestión de Riesgos	42
2.2.9.	Reputación y Atracción de Inversiones:	42
2.2.10.	Contribución a la Comunidad Local:	42
2.2.11.	Tecnologías de Membrana	42
2.2.12.	Nanofiltración	55
2.2.13.	Tratamiento del drenaje ácido de mina	58
2.2.14.	Procesos del tratamiento del drenaje ácido de mina	
2.2.15.	Aguas ácidas	62
2.2.16.	Drenaje ácido de mina	65
2.2.17.	Problemas generados por el drenaje ácido de mina	66
	álisis crítico	
2.1. And	álisis comparativo	
CAPITULO I		
	seña Histórica	
3.2. Filo	osofía Organizacional	
3.2.1.	Misión	
3.2.2.	Visión	
3.2.3.	Principios y valores	
3.3. Dis	eño Organizacional	76
	oductos y/o Servicios	
	gnóstico Organizacional	
	scripción de los Sistemas de Procesamiento de Mineral	
3.6.1.	Instalación de Molienda CCS (Área 1)	
3.6.2.	Circuito CIL (Área 2)	
3.6.3.	Filtración de Residuos CIL (Área 3)	
3.6.4.	Plantas de Tratamiento Instaladas en Mina	
CAPITULO I		
	ngnóstico	
3.7.1.	Problemática Actual	
3.8. Dia	grama de Procesos de Producción de la Minera	108

3.8.1.	Configuración del Proceso de Tratamiento de Efluentes en Zona Oeste	ə108
3.8.2.	Configuración del Proceso de Tratamiento de Efluentes en Zona Este:	109
3.9. Dis	eño de Mejora	111
3.9.1.	Caracterización de la Membrana:	111
3.9.2.	Selección de la Membrana	115
3.9.3.	Configuración de la Membrana	118
3.9.4.	Factores a considerar para elegir una membrana	120
3.10. C	Caso de Aplicación con la Tecnologías de Membranas	121
3.10.1.	Caso 1. Prueba Experimental	121
3.10.2.	Caso 2. Caso de Estudio	131
3.10.3.	Caso 3. Prueba Experimental	149
CAPITULO \	V. CONCLUSIONES Y RECOMENDACIONES	164
5.1. Cor	nclusiones	164
5.1. Red	comendaciones	169
Bibliografía .		171
Anexos		177

Índice de Tablas

Tabla 1 Ecuaciones fenomenológicas relacionadas con la fuerza impulso
(gradientes)
Tabla 2 Rango
Tabla 3 Operaciones de separación por membrana en función de la fuerza impulso
Tabla 4 Criterios clave de diseño de procesos CIL
Tabla 5: Criterios clave de diseño del proceso de filtración de residuos CIL
Tabla 6 Presencia de cobre y sólidos 10
Tabla 7 Efluente Poza de Sedimentación 10
Tabla 8 Efluente Poza de Sedimentación Oeste
Tabla 9 Límites Máximos para afluentes10
Tabla 10 Porcentajes de Minerales a extraídos durante el Procesamiento para
Optimización de los Minerales Carbonosos (LNCMOP)10
Tabla 11 Clasificación de minerales
Tabla 12 Porcentaje de contenido de cobre en minerales con la presencia de Sulfuro
Tabla 13 Características de las Membranas. Jastorff, Störmann y Wölcke en 200
11
Tabla 14 Caracterización Química de la Solución Rica
Tabla 15 Caracterización de las Aguas del Proceso
Tabla 16 Resultado del Análisis Químico de las Muestras de Periodo Experimenta
12
Tabla 17 Balance por Etapas 1 al 212
Tabla 18 Balance por Etapas 1 al 312

Tabla 19 Balance Total. 127
Tabla 20 Balance Global para las 3 etapas. 127
Tabla 21 Porcentaje de Recuperación en 2 etapas
Tabla 22 Porcentaje de Recuperación en 3 etapas
Tabla 23 Características de efluentes en la mina de oro. 131
Tabla 24 Resultado de las características de las 05 membranas probadas
Tabla 25 Características del Efluente Sintético utilizando el análisis de la membrana
zeta potencial136
Tabla 26 Rendimiento de las membranas para tratar el efluente de la minería de oro
con respecto a la resistencia intrínseca de la membrana, la resistencia al
ensuciamiento y el flujo de permeado final140
Tabla 27 Resultados de parámetros fisicoquímicos del efluente crudo y permeados
obtenidos con diferentes membranas y sus respectivas eficiencias de retención 141
Tabla 28 La conductividad del permeado NF90 en función del pH de la alimentación
148

Índice de Figuras

Figura 1 Ubicación de Lagunas Norte	22
Figura 2 Ubicación de Lagunas Norte	25
Figura 3 Esquema de un proceso de separación con membrana	44
Figura 4 Esquema de un proceso de separación con membrana de flujo tangeno	ial
	44
Figura 5 El rango de tamaño de separación de algunos compuestos	48
Figura 6 Membrana con poros asimétricos y simétricos	50
Figura 7 Osmosis Inversa	58
Figura 8 Diferencias entra la filtración estática y dinámica	60
Figura 9 Proceso Circular de Valores	76
Figura 10 Organigrama	77
Figura 11 Análisis DAFO	78
Figura 12 Análisis DAFO Minera Lagunas Norte	79
Figura 13 Implementación del Proceso de Optimización del Procesamiento de	
Minerales Carbonosos	80
Figura 14 Overall Layout - Standalone CMOP	81
Figura 15 CCS-Grinding Circuit	82
Figura 16 3140 - Ore Storage and Handling	83
Figura 17 Ore Preparation (Scrubbing & Screening)	86
Figura 18 Ore Preparation (Oversize Stockpile)	86
Figura 19 4110 – Molienda	89
Figura 20 Espesamiento de Molienda	90
Figura 21 CIL	94
Figura 22 4132 – Espesamiento y Filtración de Residuos CIL	98

Figura 24 Configuración propuesto correspondiente al proceso de Tra	atamiento de
Efluentes Zona Este	110
F igura 25 Determinación de la permeabilidad al agua pura. Jastorff, S	Störmann y
Nölcke en 2003	116
Figura 26 Configuración propuesto correspondiente al proceso de Tra	atamiento de
Efluentes Zona Oeste	117
Figura 27 Configuración propuesto correspondiente al proceso de Tra	atamiento de
Efluentes Zona Este	118
Figura 28 Esquema de una membrana en configuración en Espiral	120
Figura 29 Materiales utilizados en la prueba	124
Figura 30 Resistencia al ensuciamiento en función del pH del aliment	to y la tasa de
ecuperación	145
Figura 31 Potencial Zeta de NF90 medido con una solución salina co	n
concentraciones similares al efluente de la minería de oro	146
Figura 32 Características técnicas de la membrana NF270 de Dow C	hemical y
HYDRACoRe70pHT	149
Figura 33 Esquema de funcionamiento de una membrana de NF	150
Figura 34 Flujo Volumétrico vs La Presión Transmembrana	157
Figura 35 Caudales aplicados en las pruebas para las membranas N	IF270 e
HIDROCORE	157
Figura 36 Caudales aplicados en las pruebas para las membranas N	F270 e

Figura 38 Porcentaje de concentrado en mina con diferentes PH	160
Figura 39 Porcentaje de concentrado en mina con la membraba NF270	162
Figura 40 Porcentaje de concentrado en mina con la membrana HIDROCORE	163

DERECHOS DE AUTOR

Por medio del presente documento certifico que he leído el Reglamento de la

Protección de la Propiedad Intelectual de la Escuela de Postgrado Newman y estoy

de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del

presente trabajo de investigación quedan sujetos a lo dispuesto en este Reglamento.

Asimismo, autorizo a la Escuela de Postgrado Newman para que realice la

digitalización y publicación de este trabajo de investigación en el repositorio virtual, de

conformidad a lo dispuesto en las leyes, decretos y reglamentos de Educación

Superior.

Firma:

Nombre: Eduardo Cossío Morales

D.N.I 10129967

vii

RESUMEN

El objetivo de la presente propuesta de mejora es reducir la emisión de efluentes contaminantes producidos en el proceso de extracción de los minerales de oro y plata en la minera Lagunas Norte, mejorando los métodos existentes y utilizando tecnologías emergentes, eficientes y seguras, cuidadosas con el medio ambiente como es el tratamiento de efluentes por medio del sistema de nanofiltración, la cual permite el tratamiento de minerales lixiviados y el procesamiento de los minerales carbonosos que son efluentes líquidos los cuales presentan una alta contaminación de metales pesados, esta tecnología de nanofiltración permite una alta recuperación de permeado mediante el ajuste del PH.

La unidad minera Lagunas Norte, es de tajo abierto que explota los minerales del oro y plata. El beneficio de los minerales explotados se realiza mediante el proceso de lixiviación en pilas y para luego realizar el procesamiento en las plantas del tipo Merrill Crowe y Carbón de Columnas (CIC), para la obtención del Doré como producto final.

El proceso el drenaje ácido en mina (AMD) constituye el principal problema de contaminación ambiental asociado a la industria minera, constituyendo el resultado de la interacción entre el ambiente y los minerales sulfurados presentes en las rocas los cuales se caracterizan por poseer elevadas concentraciones de sulfato, metales disueltos y presentan una gran acidez. Una de las alternativas más prometedoras para su mitigación es el tratamiento mediante membranas de nanofiltración (NF), a diferencia de tratamientos convencionales, su fácil operación resulta en aguas de alta calidad, no genera grandes cantidades de lodos ni requiere la costosa adición de productos químicos. El procesamiento de las aguas de drenaje ácido en mina (AMD) mediante el sistema de nanofiltración (NF) no ha sido muy aplicada, la reducida

literatura no incorpora suficientes modelos mecanísticos que aporten con el estudio del ensuciamiento del mineral a fin de proponer medidas de pretratamiento y optimización de la operación. La presente investigación tiene por objetivo evaluar el efecto de variables como la presión, pH, la temperatura y el tipo de membrana sobre el ensuciamiento utilizando un modelo semi- empírico y herramientas analíticas.

La nanofiltración (NF) y la osmosis inversa (RO) actualmente son los mejores procesos con capacidad para retener de manera efectiva iones obteniéndose un elevado potencial de recuperación de agua y metales asociados con el drenaje ácido en mina (AMD). Debido a esto, el proceso de nanofiltración (NF) pasa a ser una de las mejores alternativas en la retención de iones divalentes de manera eficiente llegando a producir una alta calidad de agua al igual que la osmosis inversa, con la diferencia de contar con una menos demanda energética y demostrando ser más eficiente al proporcionar una mayor permeabilidad de agua con menores presiones de operación.

La oxidación de minerales sulfurados asociados con el drenaje ácido en mina (AMD) ha sido un problema ambiental para la industria minera en todo el mundo. El AMD se caracteriza de manera general por tener altas concentraciones de sulfato, metales pesados y metaloides y por tener un pH bajo. EL proceso de separación mediante membranas se ha convertido en una tecnología prometedora para el tratamiento de aguas contaminadas debido a su eficaz y eficiente remoción de especies.

Los resultados indican que las membranas comerciales enrolladas en espiral demostraron tener una alta capacidad de retención de minerales y sulfatos, demostrándose en las pruebas de caracterización realizadas.

INTRODUCCIÓN

La extracción de minerales es una actividad importante del Perú, debido a que genera una cantidad de divisas importante para país, siendo la extracción del Oro y Plata, los minerales que son explotados por mineras como Lagunas Norte pertenecientes a la Minera Boroo.

La industria extractiva constituye uno de los cimientos primordiales para el progreso de la actividad económica peruana, evidenciándose un crecimiento en la última década en diversas magnitudes macroeconómicas tales como la producción, inversión, generación de empleo, exportaciones, transferencias, entre otros indicadores. En el año 2022, el Perú figuró entre los principales productores mundiales de minerales, exhibiendo preeminencia en 8 de los minerales más transados, a saber, cobre, oro, zinc, plata, plomo, hierro, estaño y molibdeno. La nación peruana afianzó su posición como el segundo mayor productor global de cobre y zinc, además de ostentar el primer puesto a nivel latinoamericano en la producción de zinc y estaño. Añadiendo a esto, detenta las reservas más considerables de plata a nivel global y se posiciona en el tercer lugar en reservas de cobre y molibdeno.

En la minera Lagunas norte viene mejorando el desarrollo de los procesos de obtención de minerales mediante el tratamiento de lixiviación y el proceso de optimización de minerales carbonosos por lo que se generan en promedio 4,200 m³/h de solución rica de mineral tales como el oro, plata, cobre, zinc y cadmio como minerales más importantes.

Este incremento en la producción del mineral en estos últimos años ha acrecentado la utilización de solución cianurada en la mina y ha puesto en evidencia la necesidad de mejorar el tratamiento de las aguas acidas, por lo que actualmente dispone de dos plantas de tratamiento de drenaje de roca ácida o planta de tratamiento

ARD este y oeste.

Cada una de las plantas ARD reciben agua de las pozas de colección del drenaje ácido, los lodos descartados son impulsados hacia la poza de lodos existentes, sin embargo el agua obtenida es tratada en una planta de ajuste de PH, para luego ser recuperada y vertida a la quebrada, esta agua antes de su vertimiento requiere ser tratada mediante un método eficiente a fin de disminuir la concentración de minerales encontrados como el principalmente el cobre, plomo y zinc a fin de cumplir con los estándares de calidad de agua y puedan ser vertidos a la quebrada sin problemas, disminuyendo los impactos ambientales.

Por lo que se propone implementar un método eficiente y menos costoso como es la implementación el proceso de nanofiltración mediante el uso de membranas.

Escasas son las pesquisas que han afrontado la manipulación del agua de drenaje en yacimiento (AMD) mediante membranas de nanofiltración (NF); por ende, uno de los propósitos de esta labor consiste en valorar la instauración de la nanofiltración y su perfeccionamiento en el procedimiento ininterrumpido de operación en la explotación minera Lagunas Norte. En el presente trabajo se desarrollará la siguiente:

En el primer apartado, se establecen los antecedentes de la investigación, donde se profundiza en la problemática vinculada a la seguridad de la información en la compañía. Se aborda también la identificación y definición de variables, así como la delineación de los objetivos y supuestos de la indagación.

En el segundo capítulo, se examina el marco teórico, en el cual se refleja la reelaboración de las variables a partir de la bibliografía consultada.

El tercer capítulo presenta el Marco Referencial, que proporciona una

descripción detallada de la empresa Lagunas Norte.

El cuarto capítulo aborda el marco metodológico, donde se expone el desarrollo de la investigación, el tratamiento de los datos recopilados y sus respectivos resultados.

En el quinto capítulo, se elaboran sugerencias basadas en los resultados obtenidos de los objetivos de la investigación, proponiendo recomendaciones o sugerencias de implementación según corresponda.